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Electronic and optical properties of Cd1−xZnxS nanocrystals
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Abstract. We report a numerical simulation of the conduction and valence band edges of Cd1−xZnxS
nanocrystallites using a one — dimensional potential model. Electron — hole pairs are assumed to be
confined in nanospheres of finite barrier heights. Optical absorption measurements are used to fit the
bandgap of the Cd1−xZnxS nanocrystal material. A theoretical analysis is also made to calculate the
energy location of bound excitons and the oscillator strength of interband transitions as a function of zinc
composition. The aim of the latter study is to investigate the optical behavior of Cd1−xZnxS nanocrystals.
An attempt to explain all the results is presented.

PACS. 73.21.La Quantum dots – 73.22.-f Electronic structure of nanoscale materials: clusters,
nanoparticles, nanotubes, and nanocrystals – 71.55.Gs II-VI semiconductors

The study of structural and optical properties of nanocrys-
tals is being one of the primary interests in both
fundamental and applied research. Most studied are
nanocrystals based on CdS [1]. It is well established that
nanocrystalline compounds exhibit a quantum confine-
ment effect [2–6] and show intermediate physical proper-
ties between the bulk solid and molecules as well. Depend-
ing on the crystalline size, two limiting confinements can
occur. When the radius R of a nanocrystal is smaller than
twice the exciton Bohr radius ax, electrons and holes are
considered as two confined particles bound by an enforced
Coulomb interaction. However, for a crystalline semicon-
ductor having R larger than 4ax, the ground exciton can
be treated as a rigid quasiparticle. Thus, in nanocrystalites
with relatively low radii, the motion of both electrons and
holes as well as their energies are quantized, which leads
to a widening in the band gap [1,7]. In the present work,
our interest has been focused on Cd1−xZnxS nanocrys-
tals with the aim to investigate their electronic and op-
tical properties. It is to be noticed that the Cd1−xZnxS
alloy is widely used as window layers for solar cells [7–15].
Despite the high potential of Cd1−xZnxS in device appli-
cations, this material has not been investigated further
in nanocrystallites. More especially, the existing theoret-
ical works seem to be insufficient to cover all the physi-
cal aspects of these nanostructures [7]. In this communi-
cation, we attempt to study theoretically the electro —
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optical properties of Cd1−xZnxS nanocrystals as a func-
tion of zinc composition. The paper is organized as fol-
lows: after a brief introduction, we present the computa-
tional method; in the following we report a modeling of
Cd1−xZnxS nanocrystallites; conclusions are summarized
in the last section.

As a system, we consider a pair of an electron and a
hole, both confined in a spherical nanocrystallite of ra-
dius R. The semiconductor material is capped inside a
dielectric matrix. For the Cd1−xZnxS system, sol-gel sil-
ica thin films were used as a surrounding dielectric host
lattice to embedd the nanoparticles [7]. According to that
reported in reference [16], only the electrons are assumed
to be confined while the holes reside at the center of the
nanospheres. More elaborate calculations have been made
elsewhere, which consider the confinement of both free car-
riers [5,7,17]. It is worth noticing that the two approaches
are based on an infinite potential barrier model. Here, we
assume that both electrons and holes can undergo a quan-
tum confinement and the boundary of the nanocrystallite
is of finite barrier height. The latter assumption implies
that free carriers can tunnel through the potential bar-
rier. For a sake of simplicity, the electron and hole con-
finements are assumed to be uncorrelated. The Coulomb
potential associated with the electron — hole interaction
can be treated perturbavely or by using variational meth-
ods [18,19]. For the Cd1−xZnxS nanocrystal being investi-
gated, the ground state of the electron — hole pair can be
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described from the differential equations:
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where � is the Plank’s constant, m∗ is the effective mass
of the carriers, L represents the azimuthal momentum op-
erator, V is the height of the confinement potential, h(t)
is the step function, ε is the confinement energy and ψ (r)
is the eigen wavefunction. The subscripts e and h refer
to the electron and hole particles respectively. In deriving
equation (1), we have used the effective mass theory and
neglected the band nonparabolicity and the effective mass
mismatch between the well and the barrier. Taking the
eigenfunctions under the form
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where Y m
l (θ,ϕ) are the spherical harmonics, equation (1)

may be rewritten as:
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Here l denotes the quantum number associated with the
operator L. The function ϕ(r) is subjected to be equal to
zero at the center of the nanosphere. In the case of l differ-
ent to zero, equation (2) can be solved by using the Bessel
functions as an orthonormal basis set. However, for the
bound states ns (l = 0), the problem to solve is reduced
to a set of basic equations for an electron-hole pair in a
one-dimensional potential well. In the following, we will
restrict the study to these eigenstates. For energies such
that εe,h < Ve,h, the wavefunctions should decay exponen-
tially in the barrier. Thus, the confinement energies as well
as the wavefunctions for the eigenstates ns in nanocrystals
are given by:
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Fig. 1. The band gap energy as a function of x for Cd1−xZnxS
quantum dots. CB and VB refer to the conduction and valence
band edges. The energy emission of an interband transition is
shown as a separation between the bands. The arrows indicate
the absorption peak energies, as taken from reference [7]. Also
reported in the plot are the band gap of bulk Cd1−xZnxS (in
dashed line) and the energy position of the bound exciton state
(in dotted line).

A is the normalized factor. In solving equation (3), Ve, Vh

andR are treated as fitting parameters. If we now consider
the electron-hole interaction, one has to solve for the ns
bound states an exciton Hamiltonian in a square potential
well (for solving this Hamiltonian see [18,19]).

With use of equation (3), we have calculated the con-
duction and valence band edges of a Cd1−xZnxS nanocrys-
tal as a function of composition x. Results are depicted
in Figure 1. As an experimental support, we have used
absorption data obtained on Cd1−xZnxS thin films pre-
pared by the sol-gel technique [7]. As can be noticed from
the plot, the bandgap of the Cd1−xZnxS nanocrystalline
material ranges from 2.56 to 4.30 eV, result in a good
agreement with the relevant gap from optical absorption.
The electron and hole effective masses used to calculate
the subbands have been taken from references [1,20]. Val-
ues of these parameters and those of Ve, Vh and R are
listed in Table 1. The change of the electron and hole
effective masses as well as that of the relative dielec-
tric constant in Cd1−xZnxS nanocrystallites with different
zinc contents has been considered using linear interpola-
tion. The zero energy is taken at the top of the valence
bands of Cd1−xZnxS alloys. The dashed line is the plot
of the bandgap versus x for bulk Cd1−xZnxS [21]. As
also shown in Figure 1, both the conduction and valence
bands are shifted in energy compared to the bulk due to
the confinement of free carriers. The total energy shift is:
∆Eg = εe + εh, which corresponds to the bandgap widen-
ing. As well demonstrated from the previous calculations,
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Table 1. Parameters used to calculate the band edges for the
Cd1−xZnxS nanocrystals.

x me/m0 mhh/m0 εr Ve (eV) Vh (eV) R (nm)
0.0 0.20 5.00 8.5 0.13 0.13 2.0
0.2 0.40 0.10 2.0
0.4 0.40 0.20 1.5
0.6 1.00 1.00 1.5
0.8 1.25 1.00 1.3
1.0 0.28 1.76 8.0 01.75 0.60 1.2

the electron confinement energy shows a significant in-
crease with the Zn molar fraction. This trend can be ex-
plained in terms of the x-dependence of the barrier po-
tential. Indeed, the latter has been found to increase with
increased Zn composition. In contrast, the hole confine-
ment is not large going from CdS to ZnS, compared to
that obtained for the electrons. To elucidate this behavior,
it seems that the Cd substitution by a Zn atom induces
a potential more attractive for the electrons. Also, the
radius of the Cd1−xZnxS dots decreases as the Zn compo-
sition goes from zero to one. This can be explained by the
fact that the crystalline sizes of Cd1−xZnxS decrease as
x increases. (a(CdS) = 0.413; a(ZnS) = 0.381; c(CdS) =
0.676; c(ZnS)= 0.625 nm). Such a trend accentuates the
confinement of free carriers in Cd1−xZnxS dots when in-
creasing the zinc molar fraction. Let us now discuss the
validity of the fitting parameters Ve, Vh and R. Concern-
ing the two first ones, the previous works including refer-
ence [7] have considered them as infinite potential barriers
for both electrons and holes. To our knowledge, there are
no available data in the literature for comparison. As for
the nanocrystallite size R, it has been however estimated
using transmission electron micrograph measurements [7].
The particle radius is found to be of 4.5 and 2.0 nm for CdS
and ZnS respectively [7]. For the intermediate Zn com-
positions, it was claimed in the same reference that the
average of the nanocrystallite size of Cd1−xZnxS quan-
tum dots varies between these two extreme values. The
nanocrystallites size, as deduced from our calculations,
does not show a significant discrepancy with respect to
the relevant experimental values. There is an agreement
in the order of magnitude of the two sets of particle size
parameters. Most interesting, the same decreasing trend
of the QD’s crystalline size has been found in the two
cases with increasing the ZnS molar fraction. Cd1−xZnxS
quantum dots in borosilicate glass, on the other hand,
have been investigated [22]. The average particle radius,
as deduced from optical — absorption and Raman — scat-
tering, is in the range 1.5–2.0 nm, which agree well with
our nanocrystallites’ sizes obtained. Using results of pre-
vious modeling, we have investigated excitonic properties
in Cd1−xZnxS nanocrystallites as well. Calculations were
made following Greene et al. [18]. The results obtained for
the binding energy of bound-excitons (BE) are plotted in
Figure 1. It is clearly seen that the energy of the exciton
ground state increases with zinc composition. The follow-
ing analytical law has been found to fit the exciton bind-
ing energy: Eexc(x) = 0.0698+0.0364 x+0.0073 x2 in eV.

Concerning the increase of the exciton energy in nanocrys-
tallites with different Zn compositions, it is most probably
correlated to the x-dependence of the barrier heights that
further confine free carriers as Zn content increases. On
the other hand, a decrease in the dot radius when increas-
ing x reduces the spatial exciton extension, giving rise
to an increase in the energy of the exciton ground state.
Also discussed in the paper is the efficiency of emission in
Cd1−xZnxS nanocrystallites. According to the band gap
results, the energy emission of interband transitions can be
seen to vary in the 2.56 (484.1)–4.30 eV (288.2 nm) spec-
tral range. This means that Cd1−xZnx S nanocrystals can
emit in both ultraviolet and visible spectral wavelengths.
Another characteristic of an electron transition is the os-
cillator strength [23]. For the Cd1−xZnxS system being
studied, the oscillator strength of the ground interband
transition is given by:
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where m0 is the free electron mass. We have calculated
the x-dependent oscillator strength for the band-to-band
transition using equation (5). Typical results, obtained for
R ∼ 1.2–2.0 nm, are shown in Figure 2. As has been found,
the oscillator strength fCB→V B first increases and then
shows a decreasing tendency as x increases. Note that this
decrease does not affect significantly the interband tran-
sition oscillator strengths. This means that the efficiency
of radiative recombination in Cd1−xZnxS nanocrystallites
is highly preserved.

In summary, we have investigated the electronic prop-
erties of Cd1−xZnxS nanocrystals. A particular atten-
tion has been paid to their compositional dependencies.
Both electrons and holes are assumed to be confined in
nanospheres with finite potential barriers at the bound-
ary. By restricting the study to the bound ns states, the
problem to solve is reduced to that of a one-dimensional
potential well. Using this model, we have calculated the
shape of the confining potentials, the quantized energies
and their related envelope wave-functions. The theoretical
results obtained for the x-dependent gap were fitted us-
ing optical absorption measurements. For the Cd1−xZnxS
nanocrystals being studied, we have computed the binding
energy of bound excitons and the oscillator strength of in-
terband transitions as well. Calculations have been made



78 The European Physical Journal B

Fig. 2. The x-dependent oscillator strength of interband tran-
sitions in Cd1−xZnxS nanocrystals.

as a function of the ZnS molar fraction. A peculiar feature
was revealed: Cd1−xZnxS dots can emit photon energies in
the ultraviolet-visible spectral wavelength with relatively
high efficiency. From a fundamental view point, a good un-
derstanding of the electronic and optical properties gives
useful information on the free carrier distribution, the po-
tential profile and the coupling between electron and hole
gases within the nanocrystallites. In technological appli-
cations, this investigation is of great interest as well, more
especially for designing devices based on II–VI and III–V
nanocrystalline semiconductors.
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